58 research outputs found

    The euphotic zone under Arctic Ocean sea ice : vertical extents and seasonal trends

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 62 (2017): 1910–1934, doi:10.1002/lno.10543.Eight Ice-Tethered Profilers were deployed in the Arctic Ocean between 2011 and 2013 to measure vertical distributions of photosynthetically active radiation (PAR) and other bio-optical properties in ice-covered water columns, multiple times a day over periods of up to a year. With the radiometers used on these profilers, PAR could be measured to depths of only ∼20–40 m in the central Arctic in late summer under sea ice ∼1 m thick. At lower latitudes in the Beaufort Gyre, late summer PAR was measurable under ice to depths exceeding 125 m. The maximum depths of measurable PAR followed seasonal trends in insolation, with isolumes shoaling in the fall as solar elevation decreased and deepening in spring and early summer after insolation resumed and sea ice diminished. PAR intensities were often anomalously low above 20 m, likely due to a shading effect associated with local horizontal heterogeneity in light transmittance by the overlying sea ice. A model was developed to parameterize these complex vertical PAR distributions to improve estimates of the water column diffuse attenuation coefficient and other related parameters. Such a model is necessary to separate the effect of surface ice heterogeneity on under-ice PAR profiles from that of the water column itself, so that euphotic zone depth in ice-covered water columns can be computed using canonical metrics such as the 1% light level. Water column diffuse attenuation coefficients derived from such autonomously-collected PAR profile data, using this model, agreed favorably with values determined manually in complementary studies.Woods Hole Oceanographic Institution; National Science Foundation Grant Number: ARC-085647

    Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C00A02, doi:10.1029/2008JC004829.Six Ice-Tethered Profilers (ITP), deployed in the central Canada Basin of the Arctic Ocean between 2004 and 2007, have provided detailed potential temperature and salinity measurements of a double-diffusive staircase at about 200–300 m depth. Individual layers in the staircase are of order 1 m in vertical height but appear to extend horizontally for hundreds of kilometers, with along-layer gradients of temperature and salinity tightly related. On the basis of laboratory-derived double-diffusive flux laws, estimated vertical heat fluxes through the staircase are in the range 0.05–0.3 W m−2, only about one tenth of the estimated mean surface mixed layer heat flux to the sea ice. It is thus concluded that the vertical transport of heat from the Atlantic Water in the central basin is unlikely to have a significant impact to the Canada Basin ocean surface heat budget. Icebreaker conductivity-temperature-depth data from the Beaufort Gyre Freshwater Experiment show that the staircase is absent at the basin periphery. Turbulent mixing that presumably disrupts the staircase might drive greater flux from the Atlantic Water at the basin boundaries and possibly dominate the regionally averaged heat flux.Funding for construction and deployment of the prototype ITPs was provided by the National Science Foundation Oceanographic Technology and Interdisciplinary Coordination (OTIC) Program and Office of Polar Programs (OPP) under grant OCE-0324233. Continued support for the ITP field program and data analysis has been provided by the OPP Arctic Sciences Section under awards ARC-0519899, ARC-0631951, ARC-0713837, and internal WHOI funding

    Assessing algal biomass and bio-optical distributions in perennially ice-covered polar ocean ecosystems

    Get PDF
    AbstractUnder-ice observations of algal biomass and seasonality are critical for understanding better how climate-driven changes affect polar ocean ecosystems. However, seasonal and interannual variability in algal biomass has been studied sparsely in perennially ice-covered polar ocean regions. To address this gap in polar ocean observing, bio-optical sensors for measuring chlorophyll fluorescence, optical scattering, dissolved organic matter fluorescence, and incident solar radiation were integrated into Ice-Tethered Profilers (ITPs). Eight such systems have been deployed in the Arctic Ocean, with five profilers completing their deployments to date including two that observed an entire annual cycle in the central Arctic Ocean and Beaufort Sea respectively. These time series revealed basic seasonal differences in the vertical distributions of algal biomass and related bio-optical properties in these two regions of the Arctic Ocean. Because they conduct profiles on daily or sub-daily scales, ITP bio-optical data allow more accurate assessments of the timing of changes in under-ice algal biomass such as the onset of the growing season in the water column, the subsequent export of particulate organic matter at the end, and the frequency of intermittent perturbations, which in the central Arctic Ocean were observed to have time scales of between one and two weeks

    Sea surface pCO2 and O2 dynamics in the partially ice-covered Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 1425–1438, doi:10.1002/2016JC012162.Understanding the physical and biogeochemical processes that control CO2 and dissolved oxygen (DO) dynamics in the Arctic Ocean (AO) is crucial for predicting future air-sea CO2 fluxes and ocean acidification. Past studies have primarily been conducted on the AO continental shelves during low-ice periods and we lack information on gas dynamics in the deep AO basins where ice typically inhibits contact with the atmosphere. To study these gas dynamics, in situ time-series data have been collected in the Canada Basin during late summer to autumn of 2012. Partial pressure of CO2 (pCO2), DO concentration, temperature, salinity, and chlorophyll-a fluorescence (Chl-a) were measured in the upper ocean in a range of sea ice states by two drifting instrument systems. Although the two systems were on average only 222 km apart, they experienced considerably different ice cover and external forcings during the 40–50 day periods when data were collected. The pCO2 levels at both locations were well below atmospheric saturation whereas DO was almost always slightly supersaturated. Modeling results suggest that air-sea gas exchange, net community production (NCP), and horizontal gradients were the main sources of pCO2 and DO variability in the sparsely ice-covered AO. In areas more densely covered by sea ice, horizontal gradients were the dominant source of variability, with no significant NCP in the surface mixed layer. If the AO reaches equilibrium with atmospheric CO2 as ice cover continues to decrease, aragonite saturation will drop from a present mean of 1.00 ± 0.02 to 0.86 ± 0.01.U.S. National Science Foundation Arctic Observing Network Grant Number: ARC-1107346 and ARC-08564792017-08-2

    Automated ice-tethered profilers for seawater observations under pack ice in all seasons

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 25 (2008): 2091-2105, doi:10.1175/2008JTECHO587.1.An automated, easily deployed Ice-Tethered Profiler (ITP) instrument system, developed for deployment on perennial sea ice in the polar oceans to measure changes in upper ocean water properties in all seasons, is described, and representative data from prototype instruments are presented. The ITP instrument consists of three components: a surface subsystem that sits atop an ice floe; a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface element; and an instrumented underwater unit that employs a traction drive to profile up and down the wire tether. ITPs profile the water column at a programmed sampling interval; after each profile, the underwater unit transfers two files holding oceanographic and engineering data to the surface unit using an inductive modem and from the surface instrument to a shore-based data server using an Iridium transmitter. The surface instrument also accumulates battery voltage readings, buoy temperature data, and locations from a GPS receiver at a specified interval (usually every hour) and transmits those data daily. Oceanographic and engineering data are processed, displayed, and made available in near–real time (available online at http://www.whoi.edu/itp). Six ITPs were deployed in the Arctic Ocean between 2004 and 2006 in the Beaufort gyre with various programmed sampling schedules of two to six one-way traverses per day between 10- and 750–760-m depth, providing more than 5300 profiles in all seasons (as of July 2007). The acquired CTD profile data document interesting spatial variations in the major water masses of the Canada Basin, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, measure seasonal surface mixed layer deepening, and document several mesoscale eddies. Augmenting the systems already deployed and to replace expiring systems, an international array of more than one dozen ITPs will be deployed as part of the Arctic Observing Network during the International Polar Year (IPY) period (2007–08) holding promise for more valuable real-time upper ocean observations for operational needs, to support studies of ocean processes, and to facilitate numerical model initialization and validation.Initial development of the ITP concept was supported by the Cecil H. and Ida M. Green Technology Innovation Program. Funding for construction and deployment of the prototype ITPs was provided by the National Science Foundation Oceanographic Technology and Interdisciplinary Coordination (OTIC) Program and Office of Polar Programs (OPP) under Grant OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Awards ARC-0519899 and ARC-0631951, and internal WHOI funding

    Ocean circulation and variability beneath Nioghalvfjerdsbrae (79 North Glacier) ice tongue

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016091, doi:10.1029/2020JC016091.The floating ice tongue of 79 North Glacier, a major outlet glacier of the Northeast Greenland Ice Stream, has thinned by 30% since 1999. Earlier studies have indicated that long‐term warming of Atlantic Intermediate Water (AIW) is likely driving increased basal melt, causing the observed thinning. Still, limited ocean measurements in 79 North Fjord beneath the ice tongue have made it difficult to test this hypothesis. Here we use data from an Ice Tethered Mooring (ITM) deployed in a rift in the ice tongue from August 2016 to July 2017 to show that the subannual AIW temperature variability is smaller than the observed interannual variability, supporting the conclusion that AIW has warmed over the period of ice tongue thinning. In July 2017, the AIW at 500 m depth in the ice tongue cavity reached a maximum recorded temperature of 1.5°C. Velocity measurements reveal weak tides and a mean overturning circulation, which is likely seasonally enhanced by subglacial runoff discharged at the grounding line. Deep inflow of AIW and shallow export of melt‐modified water persist throughout the record, indicating year‐round basal melting of the ice tongue. Comparison with a mooring outside of the cavity suggests a rapid exchange between the cavity and continental shelf. Warming observed during 2016–2017 is estimated to drive a 33 ± 20% increase in basal melt rate near the ice tongue terminus and a 14 ± 2% increase near the grounding line if sustained.Funding for the ITM was provided by the Grossman Family Foundation through the WHOI Development Office. M. R. L. is supported by a National Defense Science and Engineering Graduate Fellowship. N. L. B. is supported by a grant from the National Science Foundation (NSF OCE‐1536856).2021-02-1

    Design and operation of automated ice-tethered profilers for real-time seawater observations in the polar oceans

    Get PDF
    An automated, easily-deployed Ice-Tethered Profiler (ITP) has been developed for deployment on perennial sea ice in polar oceans to measure changes in upper ocean temperature and salinity in all seasons. The ITP system consists of three components: a surface instrument that sits atop an ice floe, a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface instrument, and an instrumented underwater unit that profiles up and down the wire tether. The profiling underwater unit is similar in shape and dimension to an ARGO float except that the float's variable-buoyancy system is replaced with a traction drive unit. Deployment of ITPs may be conducted either from ice caps or icebreakers, utilizing a self contained tripod/winch system that requires no power. Careful selection of an appropriate multiyear ice floe is needed to prolong the lifetime of the system (up to 3 years depending on the profiling schedule). Shortly after deployment, each ITP begins profiling the water column at its programmed sampling interval. After each acquired temperature and salinity profile, the underwater unit (PROCON) transfers the data and engineering files using an inductive modem to the surface controller (SURFCON). SURFCON also accumulates battery voltages, buoy temperature, and locations from GPS at specified intervals in status files, and queues that information for transmission at the start of each new day. At frequent intervals, an Iridium satellite transceiver in the surface package calls and transmits queued status and CTD data files onto a WHOI logger computer, which are subsequently processed and displayed in near-real time at http://www.whoi.edu/itp. In 2004 and 2005, three ITP prototypes were deployed in the Arctic Ocean. Each system was programmed with accelerated sampling schedules of multiple one-way traverses per day between 10 and 750-760 m depth in order to quickly evaluate endurance and component fatigue. Two of the ITPs are continuing to function after more than 10 months and 1200 profiles. Larger motor currents are observed at times of fast ice floe motion when larger wire angles develop and drag forces on the profiler are increased. The CTD profile data so far obtained document interesting spatial variations in the major water masses of the Beaufort Gyre, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, and many mesoscale eddys. Deployed together with CRREL Ice Mass Balance (IMB) buoys, these ITP systems also operate as part of an Ice Based Observatory (IBO). Data returned from an array of IBOs within an Arctic Observing Network will provide valuable real time observations, support studies of ocean processes, and facilitate numerical model initialization and validation.Funding was provided by the National Science Foundation under Contract Nos. OCE-0324233 and ARC-0519899

    Toward Improved Observing of the Rapidly Changing Arctic Ocean

    Get PDF
    Arctic Observing Summit (April 30 – May 2, 2013, Vancouver, Canada); AON statementIn order to observe and understand the Arctic Ocean and its response to climate change, the traditional approach of acquiring observations when and where the Arctic is accessible has to be enhanced with multi-faceted measurement systems operating autonomously to provide year-round information in real time. The major goal of such a network of autonomous sensors is to measure and monitor physical, chemical and biological parameters in the atmosphere, sea ice and ocean on at least daily intervals

    Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 133–145, doi:10.1175/2007JPO3782.1.Five ice-tethered profilers (ITPs), deployed between 2004 and 2006, have provided detailed potential temperature θ and salinity S profiles from 21 anticyclonic eddy encounters in the central Canada Basin of the Arctic Ocean. The 12–35-m-thick eddies have center depths between 42 and 69 m in the Arctic halocline, and are shallower and less dense than the majority of eddies observed previously in the central Canada Basin. They are characterized by anomalously cold θ and low stratification, and have horizontal scales on the order of, or less than, the Rossby radius of deformation (about 10 km). Maximum azimuthal speeds estimated from dynamic heights (assuming cyclogeostrophic balance) are between 9 and 26 cm s−1, an order of magnitude larger than typical ambient flow speeds in the central basin. Eddy θ–S and potential vorticity properties, as well as horizontal and vertical scales, are consistent with their formation by instability of a surface front at about 80°N that appears in historical CTD and expendable CTD (XCTD) measurements. This would suggest eddy lifetimes longer than 6 months. While the baroclinic instability of boundary currents cannot be ruled out as a generation mechanism, it is less likely since deeper eddies that would originate from the deeper-reaching boundary flows are not observed in the survey region.The engineering design work for the ITP was initiated by the Cecil H. and Ida M. Green Technology Innovation Program (an internal program at the Woods Hole Oceanographic Institution). Prototype development and construction were funded jointly by the U.S. National Science Foundation (NSF) Oceanographic Technology and Interdisciplinary Coordination Program and Office of Polar Programs (OPP) under Award OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Award ARC-0519899 and internal WHOI funding

    The 2017 reversal of the Beaufort Gyre: Can dynamic thickening of a seasonal ice cover during a reversal limit summer ice melt in the Beaufort Sea?

    Get PDF
    During winter 2017 the semi‐permanent Beaufort High collapsed and the anticyclonic Beaufort Gyre reversed. The reversal drove eastward ice motion through the Western Arctic, causing sea ice to converge against Banks Island, and halted the circulation of multiyear sea ice via the gyre, preventing its replenishment in the Beaufort Sea. Prior to the reversal, an anomalously thin seasonal ice cover had formed in the Beaufort following ice‐free conditions during September 2016. With the onset of the reversal in January 2017, convergence drove uncharacteristic dynamic thickening during winter. By the end of March, despite seasonal ice comprising 97% of the ice cover, the reversal created the thickest, roughest and most voluminous regional ice cover of the CryoSat‐2 record. Within the Beaufort Sea, previous work has shown that winter ice export can precondition the region for increased summer ice melt, but that a short reversal during April 2013 contributed to a reduction in summer ice loss. Hence the deformed ice cover at the end of winter 2017 could be expected to limit summer melt. In spite of this, the Beaufort ice cover fell to its fourth lowest September area as the gyre re‐established during April and divergent ice drift broke up the pack, negating the reversal's earlier preconditioning. Our work highlights that dynamic winter thickening of a regional sea ice cover, for instance during a gyre reversal, offers the potential to limit summer ice loss, but that dynamic forcing during spring dictates whether this conditioning carries through to the melt season
    corecore